Image by National Cancer Institute


Our research focuses on the development of novel non-viral strategies for effective in vitro and in vivo intracellular delivery and their related therapeutic and basic biological applications. To achieve our goal, we apply the cutting-edge technology, including nano and micro chip fabrication, microfluidics, and nanomaterial synthesis, to construct the delivery systems.


Developing the Next Generation Cell Therapy

     Chimeric Antigen Receptors (CAR) immune cell therapy is one of the most promising treatments for curing cancers. While this new therapy brings light to the cancer patients, the sky price that can exceed 1.5 million US dollars per CAR-T cell treatment limits the accessibility to most of the cancer patients. Additionally, CAR-T therapy shows limited modest success for targeting solid tumors, due to lack of appropriate immunologic targets and antigen escape phenomenon. Genomic Engineered CAR Natural Killer (NK) cell provides an alternative solution. Yet, the development of CAR-NK cell therapy is still in its infancy. One main challenge associated with it is the low effective genetic manipulation methods.

     The ultimate goal of this project is to reduce the cost of the immunotherapy and broaden its applications for solid tumor treatment by developing a scalable, nondisruptive, highly efficient non-viral delivery system for T and NK cells genome engineering. 

Embryonic Stem Cells